Object Oriented
Programming and Classes

1. Creating and Using a Class
2. Inheritance
3. Encapsulation

4. Polymorphism

In the first lecture, we mentioned that everything in Python is an object, so we've been
using objects constantly. Object Oriented Programming (OOP) is a programming
paradigm that allows you to group variables (data/attributes) and functions (methods)
into new custom data types called classes, from which you can create objects (instance).

In the first lecture, we mentioned that everything in Python is an object, so we've been
using objects constantly. Object Oriented Programming (OOP) is a programming
paradigm that allows you to group variables (data/attributes) and functions (methods)
into new custom data types called classes, from which you can create objects (instance).

When you write a class, you define the general behavior that a whole category of objects
can have. When you create individual objects from the class, each object is automatically
equipped with the general behavior; you can then give each object whatever unique traits
you desire. Making an object from a class is called instantiation, and you work with
instances of a class.

In the first lecture, we mentioned that everything in Python is an object, so we've been
using objects constantly. Object Oriented Programming (OOP) is a programming
paradigm that allows you to group variables (data/attributes) and functions (methods)
into new custom data types called classes, from which you can create objects (instance).

When you write a class, you define the general behavior that a whole category of objects
can have. When you create individual objects from the class, each object is automatically
equipped with the general behavior; you can then give each object whatever unique traits
you desire. Making an object from a class is called instantiation, and you work with
instances of a class.

You've already used lots of classes created by other people (int, str, float, list,
dict, etc.); these are designed to represent simple pieces of information, such as the

cost of an apple, the name of a student. What if you want to represent something more
complex? In this chapter, you'll learn how to create your custom classes.

Creating and Using a Class

You can model almost anything using classes. Let's start by writing a simple class, Dog,
that represents a dog — not one dog in particular, but any dog.

You can model almost anything using classes. Let's start by writing a simple class, Dog,
that represents a dog — not one dog in particular, but any dog.

What do we know about most pet dogs? Well, they all have a name and an age . We also
know that most dogs sit and roll over.

You can model almost anything using classes. Let's start by writing a simple class, Dog,
that represents a dog — not one dog in particular, but any dog.

What do we know about most pet dogs? Well, they all have a name and an age . We also
know that most dogs sit and roll over.

Those two pieces of information (name and age) and those two behaviors (sit and
roll over) will go in our Dog class because they're common to most dogs.

Creating the Dog Class

Each instance created from the Dog class will store a name and an age, and we'll give
each dog the ability to sit() and roll_over():

Each instance created from the Dog class will store a name and an age, and we'll give
each dog the ability to sit() and roll_over():

class Dog:

"""A simple attempt to model a dog.

def init (self, name, age):
"""Initialize name and age attributes.
self.name = name
self.age = age

def sit(self):
"""Simulate a dog sitting in response to a command."""
print(f"{self.name} is now sitting.")

def roll over(self):
"""Simulate rolling over in response to a command."""
print(f"{self.name} rolled over!")

Each instance created from the Dog class will store a name and an age, and we'll give
each dog the ability to sit() and roll_over():

class Dog:

"""A simple attempt to model a dog.

def init (self, name, age):
"""Initialize name and age attributes.
self.name = name
self.age = age

def sit(self):
"""Simulate a dog sitting in response to a command."""
print(f"{self.name} is now sitting.")

def roll over(self):
"""Simulate rolling over in response to a command."""
print(f"{self.name} rolled over!")

We first define a class called Dog with the class keyword. By convention, capitalized

names refer to classes in Python. We then write a docstring describing what this class
does.

The init () Method

1. A function that's part of a class is a method. The __init__ () method is a special
method that Python runs whenever we create a new instance based on the Dog
class. This method has two leading underscores and two trailing underscores, a
convention that helps prevent Python 's default method names from conflicting

with your method names.

1. A function that's part of a class is a method. The __init__ () method is a special
method that Python runs whenever we create a new instance based on the Dog
class. This method has two leading underscores and two trailing underscores, a

convention that helps prevent Python 's default method names from conflicting
with your method names.

2. The self parameter is required in the method definition, and it must come first
before any other parameters. It must be included in the definition because when
Python calls this method later, the method call will automatically pass the object
to the self. The two variables defined in the body of the __init__ () method
each have the prefix self . Any variable prefixed with self is available to every
method in the class, and we'll also be able to access these variables through any
instance created from the class, which can be different between instances.

3. The line self.name = name takes the value associated with the parameter name
and assigns it to the instance variable name, which is then attached to the instance
being created. The same process happens with self.age = age . Variables that
are accessible through instances like this are called (instance) attributes.

3. The line self.name = name takes the value associated with the parameter name
and assigns it to the instance variable name, which is then attached to the instance
being created. The same process happens with self.age = age . Variables that
are accessible through instances like this are called (instance) attributes.

4. The Dog class has two other methods defined: sit() and roll over().
Because these methods don't need additional information to run, we define them
to have one parameter, self, so that the instances we create later will have access
to these methods. In other words, they'll be able to sit and roll over.

Making an Instance from a Class

When we make an instance of Dog, Python will callthe _ init () method from the
Dog class. We'll pass Dog() a name and an age as arguments; self is passed
automatically, so we don't need to pass it.

When we make an instance of Dog, Python will callthe _ init () method from the
Dog class. We'll pass Dog() a name and an age as arguments; self is passed
automatically, so we don't need to pass it.

my dog = Dog('Willie', 6) # This 1is known as constructor expression
You can access their 1instance attributes using dot notation:
print(f"My dog's name is {my_dog.name}.")

print(f"My dog is {my dog.age} years old.")

My dog's name is Willie.
My dog is 6 years old.

When we make an instance of Dog, Python will callthe _ init () method from the
Dog class. We'll pass Dog() a name and an age as arguments; self is passed
automatically, so we don't need to pass it.

my dog = Dog('Willie', 6) # This 1is known as constructor expression
y_dog g

You can access their 1instance attributes using dot notation:
print(f"My dog's name is {my_dog.name}.")
print(f"My dog is {my_dog.age} years old.")

My dog's name is Willie.
My dog is 6 years old.

Here, we tell Python to create a dog whose name is 'Willie' and whose age is 6, which is
known as constructor expression. When Python reads this line, it calls the __init_ ()
method in Dog with the arguments 'Willie' and 6.

The __init__ () method creates an instance representing this particular dog and sets
the name and age attributes using the values we provided. Python then returns an
instance representing this dog.

The __init__ () method creates an instance representing this particular dog and sets
the name and age attributes using the values we provided. Python then returns an
instance representing this dog.

We assign that instance to the variable my_dog . To access the attributes of an instance,
you use dot notation. After we create an instance from the class Dog, we can use dot
notation to call any method defined in Dog.

The __init__ () method creates an instance representing this particular dog and sets
the name and age attributes using the values we provided. Python then returns an
instance representing this dog.

We assign that instance to the variable my_dog . To access the attributes of an instance,
you use dot notation. After we create an instance from the class Dog, we can use dot
notation to call any method defined in Dog.

print(my_dog.name)
print(my_dog.age)
my dog.sit()

my _dog.roll over()

Willie

6

Willie is now sitting.
Willie rolled over!

Creating Multiple Instances

Once you create a class, you can use it to create different objects.

Once you create a class, you can use it to create different objects.

my dog = Dog('Willie', 6)
your_dog = Dog('Lucy', 3)
Even though my dog and your dog are both instances of the Dog class, they r
print(my_dog == your_dog)

print(f"My dog's name is {my_dog.name}.")
print(f"My dog is {my_dog.age} years old.")
my dog.sit()

print(f"\nYour dog's name is {your_dog.name}.")
print(f"Your dog is {your _dog.age} years old.")
your_dog.sit()

False

My dog's name is Willie.
My dog is 6 years old.
Willie is now sitting.

Your dog's name is Lucy.

Your dog is 3 years old.
Lucy is now sitting.

Working with Classes and Instances

The Car Class

Here, we create another class that Car with four instance attributes:

Here, we create another class that Car with four instance attributes:

class Car:

def

def

def

A simple attempt to represent a car.
__init_ (self, make, model, year):

Initialize attributes to describe a car.
self.make = make

self.model = model

self.year = year

self.odometer_reading = ©

get descriptive name(self):

"""Return a neatly formatted descriptive name.
long name = f"Created in {self.year}, {self.make} {self.model}"
return long name.title()

read_odometer(self):
"""Print a statement showing the car's mileage.
print(f"This car has {self.odometer reading} miles on it.")

Here, we create another class that Car with four instance attributes:

class Car:

"""A simple attempt to represent a car.

def init (self, make, model, year):
"""Initialize attributes to describe a car.
self.make = make
self.model = model
self.year = year
self.odometer_reading = ©

def get descriptive name(self):
"""Return a neatly formatted descriptive name.
long name = f"Created in {self.year}, {self.make} {self.model}"
return long name.title()

def read_odometer(self):
"""Print a statement showing the car's mileage.
print(f"This car has {self.odometer reading} miles on it.")

In the Car class, we definethe __init__ () method with the self parameter first, just
like we did with the Dog class. We also give it other parameters: make, model, year
and odometer_reading.The __init__ () method takes in these parameters and
assigns them to the attributes associated with instances made from this class.

Note that when an instance is created, attributes can be defined without being passed in
as parameters. Since attributes can be defined inthe __init__ () method, which assigns
a default value. In the above example, an attribute called odometer_reading always

starts with a value of 0.

Note that when an instance is created, attributes can be defined without being passed in
as parameters. Since attributes can be defined inthe __init__ () method, which assigns

a default value. In the above example, an attribute called odometer_reading always
starts with a value of 0.

Outside of the class, we make an instance from the Car class and assign it to the variable
my new_car . Then we call get descriptive name() to show what kind of car we
have! Our car starts with a mileage of O:

my new_car = Car('audi', 'a4', 2023)
print(my _new car.get descriptive name())
my new_car.read_odometer()

Created In 2023, Audi A4
This car has 0 miles on 1it.

Note that when an instance is created, attributes can be defined without being passed in
as parameters. Since attributes can be defined inthe __init__ () method, which assigns

a default value. In the above example, an attribute called odometer_reading always
starts with a value of 0.

Outside of the class, we make an instance from the Car class and assign it to the variable
my new_car . Then we call get descriptive name() to show what kind of car we
have! Our car starts with a mileage of O:

my new_car = Car('audi', 'a4', 2023)
print(my _new car.get descriptive name())
my new_car.read_odometer()

Created In 2023, Audi A4
This car has 0 miles on 1it.

Not many cars are sold with exactly O miles on the odometer, so we need a way to change
the value of this attribute.

In [4]: display quiz(path+"create class.json", max_width=800)

What is printed by the following code?

Car - 2020 Error: __init__ missing required arguments

Toyota - 2020 Toyota

Modifying Attribute Values

You can change an attribute's value in different ways: you can change the value directly
through an instance, set the value through a method, or increment the value (add a
certain amount to it) through a method. The simplest way to modify the value of an
attribute is to access the attribute directly through an instance.

You can change an attribute's value in different ways: you can change the value directly
through an instance, set the value through a method, or increment the value (add a
certain amount to it) through a method. The simplest way to modify the value of an
attribute is to access the attribute directly through an instance.

my_new_car.odometer_reading = 23
my new_car.read _odometer()

This car has 23 miles on 1it.

You can change an attribute's value in different ways: you can change the value directly
through an instance, set the value through a method, or increment the value (add a
certain amount to it) through a method. The simplest way to modify the value of an
attribute is to access the attribute directly through an instance.

my_new_car.odometer_reading = 23
my new_car.read _odometer()

This car has 23 miles on 1it.

It can be helpful to have methods that update certain attributes for you. Instead of

accessing the attribute directly, you pass the new value to a method that handles the
updating internally.

class Car:
def __init__ (self, make, model, year):
self.make, self.model, self.year, self.odometer_reading = make, model
def get descriptive name(self):
long name = f"Created in {self.year}, {self.make} {self.model}"
return long name.title()
def read_odometer(self):
print(f"This car has {self.odometer_reading} miles on it.")

We add these there methods!
def update odometer(self, mileage):

1. Set the odometer reading to the given value. Reject the change if

if mileage >= self.odometer reading:
self.odometer_reading = mileage

else:
print("You can't roll back an odometer!")

def increment_odometer(self, miles):
"""2 . Add the given amount to the odometer reading."""
self.odometer_reading += miles

def fill gas tank(self):

"""3, Filling the gas tank."™"
print("The gas tank is now fulll!")

We also define the new method increment _odometer() takesin a number of miles and
adds this value to self.odometer_reading. Finally, a method fill _gas_tank() is
also added to the class.

We also define the new method increment _odometer() takesin a number of miles and
adds this value to self.odometer_reading. Finally, a method fill _gas_tank() is
also added to the class.

my new_car = Car('audi', 'a4', 2023)
print(my_new_car.get _descriptive_name())

my new_car.update_odometer(23)
my new_car.read_odometer()

my new_car.fill gas tank()
my_new_car.increment_odometer(100)
my new_car.read_odometer()

Created In 2023, Audi A4
This car has 23 miles on it.
The gas tank is now full!
This car has 123 miles on it.

We also define the new method increment _odometer() takesin a number of miles and
adds this value to self.odometer_reading. Finally, a method fill _gas_tank() is
also added to the class.

my new_car = Car('audi', 'a4', 2023)
print(my_new_car.get _descriptive_name())

my new_car.update_odometer(23)
my new_car.read_odometer()

my new_car.fill gas tank()
my_new_car.increment_odometer(100)
my new_car.read_odometer()

Created In 2023, Audi A4
This car has 23 miles on it.
The gas tank is now full!
This car has 123 miles on it.

You can use methods like this to control how users use your program by including
additional logic!

__repr__and _ str__ method

Notice that when you evaluate the my_new_car, it will return a message that returns the
address of the object:

Notice that when you evaluate the my_new_car, it will return a message that returns the
address of the object:

my_new_car

<_main__.Car at 0x2278a2fbako>

Notice that when you evaluate the my_new_car, it will return a message that returns the
address of the object:

my_new_car

<_main__.Car at 0x2278a2fbako>

When writing your classes, it's a good idea to have a method that returns a string
containing useful information about a class instance. You can change this behavior by
adding a special function _ repr__.

class Car:
def init (self, make, model, year):
self.make, self.model, self.year, self.odometer_reading = make, model
def get descriptive name(self):
long name = f"Created in {self.year} {self.make} {self.model}"
return long name.title()
def read_odometer(self):
print(f"This car has {self.odometer reading} miles on it.")
def update odometer(self, mileage):
if mileage >= self.odometer reading:
self.odometer_reading = mileage
else:
print("You can't roll back an odometer!")
def increment_odometer(self, miles):
self.odometer_reading += miles
def fill gas tank(self):
print("The gas tank is now fulll!")

We add these two methods!
def _ repr__ (self):
return f'Car(make={self.make}, model={self.model}, year={self.year})'’

def _ str_ (self):
return self.get descriptive name()

my_new_car = Car('audi', 'a4', 2023)
my_new_car

Car(make=audi, model=a4, year=2023)

my new_car = Car('audi', 'a4', 2023)
my_new_car

Car(make=audi, model=a4, year=2023)

The Python documentation indicates that __repr__ returns the "official" string
representation of the object (It is also return when you call the built-in function repr()).
We also define the __str__ special method that is used to replace the behavior of
__repr__ in some cases. This method is called when you convert an object to a string
with the built-in function str(), such as when you print an object or call str()
explicitly.

my new_car = Car('audi', 'a4', 2023)
my_new_car

Car(make=audi, model=a4, year=2023)

The Python documentation indicates that __repr__ returns the "official" string
representation of the object (It is also return when you call the built-in function repr()).
We also define the __str__ special method that is used to replace the behavior of
__repr__ in some cases. This method is called when you convert an object to a string
with the built-in function str(), such as when you print an object or call str()
explicitly.

print(my_new car)
str(my_new_car)

Created In 2023 Audi A4

"Created In 2023 Audi A4'

my new_car = Car('audi', 'a4', 2023)
my_new_car

Car(make=audi, model=a4, year=2023)

The Python documentation indicates that __repr__ returns the "official" string
representation of the object (It is also return when you call the built-in function repr()).
We also define the __str__ special method that is used to replace the behavior of
__repr__ in some cases. This method is called when you convert an object to a string
with the built-in function str(), such as when you print an object or call str()
explicitly.

print(my_new car)
str(my_new_car)

Created In 2023 Audi A4

"Created In 2023 Audi A4'

Special methods like __init_ (), __str_ () and __repr__ are called dunder

methods (Double UNDERscore). There are many dunder methods that you can use to
customize classes.

In [5]:

What is printed by the following code?

display quiz(path+"string class.json", max_width=8600)

=k =
PR, =

<o

e <=

B ==

vemmea =t

yemma= =t

ymma=m =

Exercise 1: Create a Pokemon class with
three instance attributes: name, which stores
the name of the Pokemon as a string, type

which stores the type of Pokemon (e.g., "Fire”,
"Water” "Grass’, etc.) as string and
total species as aninteger. In addition,

addthe _ str__ () method to the class so

that it can print out meaningful information as
follows:

Pikachu (Electric, total species 320)

Complete the following class and execute the code cell to see which six Pokemon you get.

import random
import json
import time
import requests

def slow print(text, delay=0.05):
for char in text:
print(char, end="'"', flush=True)
time.sleep(delay)
print()

class Pokemon:
Your code here
def init (, , ,):

Your code here
def str_ ():
return f"{_} ({_}, total specis { })"

1. Download the data

url = 'https://raw.githubusercontent.com/fanzeyi/pokemon.json/master/pokedex.
response = requests.get(url)

if response.status code == 200:
with open('pokedex.json', 'w', encoding = "utf-8") as f:
f.write(response.text)
else:

print(f"Failed to download the file. Status code: {response.status code}"

with open('Pokedex.json', 'r' , encoding = "utf-8") as file:
pokemon data = json.load(file)

2. Randomly pick 6 pokemon

random.shuffle(pokemon_ data)
picks = pokemon_data[:6]

3. Print the pokemon you got!

print("The pokemon you got are: ")

for 1 in range(6):
pokemon = Pokemon(picks[i]['name']['english'], picks[i]['type'][0], sum([
slow print(str(pokemon))

Inheritance

You don't always have to start from scratch when writing a class. If the class you're writing
is a specialized version of another class you wrote, you can use inheritance which is
called " is a" releationship.

You don't always have to start from scratch when writing a class. If the class you're writing

is a specialized version of another class you wrote, you can use inheritance which is
called " is a" releationship.

When one class inherits from another, it takes on the attributes and methods of the first
class. The original class is called the parent class (Base), and the new class is the child
class (Derived). The child class can inherit any or all of the attributes and methods of its
parent class, but it's also free to define new attributes and methods of its own.

INHERITANCE N COMPOSITION

source: https://realpython.com/inheritance-composition-python/

The init () method for a Child Class

When writing a new class based on an existing class, we will often want to call the
__init__ () method from the parent class. This will initialize any attributes that were

defined in the parent __init () method and make them available in the child class.

When writing a new class based on an existing class, we will often want to call the
__init__ () method from the parent class. This will initialize any attributes that were

defined in the parent __init () method and make them available in the child class.

As an example, let's model an electric car. An electric car is just a specific kind of car, so
we can base our new ElectricCar class on the Car class we wrote about earlier. Then

we'll only have to write code for the attributes and behaviors specific to electric cars.

When writing a new class based on an existing class, we will often want to call the
__init__ () method from the parent class. This will initialize any attributes that were

defined in the parent __init () method and make them available in the child class.

As an example, let's model an electric car. An electric car is just a specific kind of car, so
we can base our new ElectricCar class on the Car class we wrote about earlier. Then

we'll only have to write code for the attributes and behaviors specific to electric cars.

class ElectricCar(Car):
"""Represent aspects of a car, specific to electric vehicles.
def init (self, make, model, year):

Initialize attributes of the parent class.

Then initialize attributes specific to an electric car.
super()._init_(make, model, year) # Call the constructor of parent
self.battery size = 40

def describe battery(self):
"""Print a statement describing the battery size.
print(f"This car has a {self.battery size}-kWh battery.")

1. When you create a child class, the parent class must be part of the current file and
appear before the child class. We then define the child class, ElectricCar . The

name of the parent class must be included in parentheses in the definition of a
child class.

1. When you create a child class, the parent class must be part of the current file and
appear before the child class. We then define the child class, ElectricCar . The
name of the parent class must be included in parentheses in the definition of a
child class.

2. The __init__ () method takes in the information required to make a Car
instance. The super() function is a special function that allows you to call a
method from the parent class. This line tells Python to call the __init__ ()
method from Car . The name super comes from a convention of calling the

parent class a superclass (base class) and the child class a subclass (derived
class).

1. When you create a child class, the parent class must be part of the current file and
appear before the child class. We then define the child class, ElectricCar . The
name of the parent class must be included in parentheses in the definition of a

child class.

2. The __init__ () method takes in the information required to make a Car
instance. The super() function is a special function that allows you to call a
method from the parent class. This line tells Python to call the __init__ ()
method from Car . The name super comes from a convention of calling the
parent class a superclass (base class) and the child class a subclass (derived
class).

3. We also add a new attribute specific to electric cars (a battery) and a method to
report on this attribute. We'll store the battery size and write a method that prints a
description of the battery. This attribute/method will be associated with all
instances created from the ElectricCar class but won't be associated with any

instances of Car.

We make an instance of the ElectricCar class and assignitto my_leaf.

We make an instance of the ElectricCar class and assignitto my_leaf.

my leaf = ElectricCar('nissan', 'leaf', 2023)
print(my_ leaf.get descriptive name())
my leaf.describe battery()

Created In 2023 Nissan Leaf
This car has a 40-kWh battery.

When we need to know the type of an object, we can pass the object to the built-in
type() function. But if we're doing a type check of an object, it's a better idea to use the

more flexible isinstance() built-in function. The isinstance() function will return
True if the object is of the given class or a subclass of the given class.

When we need to know the type of an object, we can pass the object to the built-in
type() function. But if we're doing a type check of an object, it's a better idea to use the

more flexible isinstance() built-in function. The isinstance() function will return
True if the object is of the given class or a subclass of the given class.

type(my_leaf)

__main__.ElectricCar

When we need to know the type of an object, we can pass the object to the built-in
type() function. But if we're doing a type check of an object, it's a better idea to use the

more flexible isinstance() built-in function. The isinstance() function will return
True if the object is of the given class or a subclass of the given class.

type(my_leaf)
__main__.ElectricCar
isinstance(my_leaf, ElectricCar)

True

When we need to know the type of an object, we can pass the object to the built-in
type() function. But if we're doing a type check of an object, it's a better idea to use the

more flexible isinstance() built-in function. The isinstance() function will return
True if the object is of the given class or a subclass of the given class.

type(my_leaf)
__main__.ElectricCar
isinstance(my_leaf, ElectricCar)
True

isinstance(my_leaf, Car)

True

Overriding Methods from the Parent Class

You can override any method from the parent class that doesn't fit what you're trying to
model with the child class. To do this, you define a method in the child class with the
same name as the method you want to override in the parent class.

You can override any method from the parent class that doesn't fit what you're trying to
model with the child class. To do this, you define a method in the child class with the
same name as the method you want to override in the parent class.

Say the class Car had a method called fill gas_ tank() . This method is meaningless

for an all-electric vehicle, so you might want to override this method. Here's one way to
do that:

class ElectricCar(Car):
"""Represent aspects of a car, specific to electric vehicles.
def init (self, make, model, year):

Initialize attributes of the parent class.

Then initialize attributes specific to an electric car.
super()._ init_ (make, model, year)

self.battery size = 40

def describe battery(self):
"""Print a statement describing the battery size.
print(f"This car has a {self.battery size}-kWh battery.")

We overide the method here

def fill gas tank(self):
"""Electric cars don't have gas tanks.
print("This car doesn't have a gas tank!")

Now if someone tries to call fill gas_tank() with an electric car, Python will ignore
the method fill gas tank() in Car and run this code instead.

Now if someone tries to call fill gas_tank() with an electric car, Python will ignore
the method fill gas tank() in Car and run this code instead.

my leaf = ElectricCar('nissan', 'leaf', 2023)
my leaf.fill gas tank()

This car doesn't have a gas tank!

Now if someone tries to call fill gas_tank() with an electric car, Python will ignore
the method fill gas_tank() in Car and run this code instead.

my leaf = ElectricCar('nissan', 'leaf', 2023)
my leaf.fill gas tank()

This car doesn't have a gas tank!

When you use inheritance, you can make your child classes retain what you need and
override anything you don’t need from the parent class!

Use composition to organize the code

When modeling something from the real world in code, you may add more detail to a
class. You'll find that you have a growing list of attributes and methods and that your files
are becoming lengthy.

When modeling something from the real world in code, you may add more detail to a
class. You'll find that you have a growing list of attributes and methods and that your files
are becoming lengthy.

In these situations, you might recognize that part of one class can be written as a
separate class. You can break your large class into smaller classes that work together; this
approach is called composition, which is sometimes referred to as the has a
releationship.

When modeling something from the real world in code, you may add more detail to a
class. You'll find that you have a growing list of attributes and methods and that your files
are becoming lengthy.

In these situations, you might recognize that part of one class can be written as a
separate class. You can break your large class into smaller classes that work together; this
approach is called composition, which is sometimes referred to as the has a
releationship.

For example, if we continue adding detail to the ElectricCar class, we might notice

that we're adding many attributes and methods specific to the car's battery. When we see
this happening, we can stop and move those attributes and methods to a separate class
called Battery . Then we can use a Battery instance as an attribute in the

ElectricCar class.

class Battery:

"""A simple attempt to model a battery for an electric car.
__init_ (self, battery size=49):

def

def

def

"""Initialize the battery's attributes.
self.battery size = battery_size

describe battery(self):
"""Print a statement describing the battery size.

print(f"This car has a {self.battery size}-kWh battery.

get _range(self):

"""Print a statement about the range this battery provides.

if self.battery size == 40:
range = 150 # Class attributes
elif self.battery size == 65:
range = 225

print(f"This car can go about {range} miles on a full charge.")

class ElectricCar(Car):

Represent aspects of a car, specific to electric vehicles.

def init (self, make, model, year):

Initialize attributes of the parent class.

Then initialize attributes specific to an electric car.

super()._init__ (make, model, year)
self.battery = Battery()

")

We define a new class called Battery that doesn't inherit from any other class. The
__init__ () method has one parameter, battery size, in addition to self. This

optional parameter sets the battery's size to 40 if no value is provided. The method
describe battery() has been moved to this class as well. A new method,

get_range() , performs some simple analysis and is also added.

We define a new class called Battery that doesn't inherit from any other class. The
__init__ () method has one parameter, battery size, in addition to self. This

optional parameter sets the battery's size to 40 if no value is provided. The method
describe battery() has been moved to this class as well. A new method,

get_range() , performs some simple analysis and is also added.

In the ElectricCar class, we now add an attribute called self.battery, tells Python
to create a new instance of Battery (with a default size of 40) and assign that instance
to the attribute self.battery.

We define a new class called Battery that doesn't inherit from any other class. The
__init__ () method has one parameter, battery size, in addition to self. This

optional parameter sets the battery's size to 40 if no value is provided. The method
describe battery() has been moved to this class as well. A new method,

get_range() , performs some simple analysis and is also added.

In the ElectricCar class, we now add an attribute called self.battery, tells Python
to create a new instance of Battery (with a default size of 40) and assign that instance
to the attribute self.battery.

Any ElectricCar instance will now have a Battery instance created automatically.

When we want to describe the battery, we need to work through the car's battery
attribute:

my leaf = ElectricCar('nissan', 'leaf', 2023)
print(my leaf.get descriptive _name())

my leaf.battery.describe battery()

my leaf.battery.get range()

Created In 2023 Nissan Leaf
This car has a 40-kWh battery.
This car can go about 150 miles on a full charge.

In []: display quiz(path+"inheritance.json", max_width=800)

Encapsulation - Attributes for data access

Most object-oriented programming languages enable you to encapsulate (or hide) an
object's data from the code. Such data in these languages are said to be private data.

Most object-oriented programming languages enable you to encapsulate (or hide) an
object's data from the code. Such data in these languages are said to be private data.

Python does not have private data. Instead, you use naming conventions to design
classes that encourage correct use.

Most object-oriented programming languages enable you to encapsulate (or hide) an
object's data from the code. Such data in these languages are said to be private data.

Python does not have private data. Instead, you use naming conventions to design
classes that encourage correct use.

By convention, Python programmers know that any attribute name beginning with
an underscore (_) is for a class's internal use only. Code should use the class's
methods to interact with each object's internal-use data attributes. Attributes whose
identifiers do not begin with an underscore (_) are considered publicly accessible.

Let's develop a Time class that stores the time in 24-hour clock format with hours in
the range 0-23 and minutes and seconds each in the range 0-59:

Let's develop a Time class that stores the time in 24-hour clock format with hours in
the range 0-23 and minutes and seconds each in the range 0-59:

class Time:
"""Class Time with read-write attributes."""
def _init_ (self, hour=0, minute=0, second=0):
"""Initialize each attribute."""
self.set _hour(hour) # 0-23, note that this Lline calls the
setter method hour
self.set minute(minute) # ©6-59, note that this Line calls the
setter method minute
self.set_second(second) # ©-59, note that this Line calls the
setter method second
#getter
def get hour(self):
"""Return the hour."""
print("getter is called")
return self. hour # Private data
#setter
def set_hour(self, hour):
"""Set the hour."""
print("setter is called")
if not (@ <= hour < 24):
raise ValueError(f'Hour ({hour}) must be 0-23")

self. _hour = hour

#getter

def get minute(self):
"""Return the minute.
return self. minute # Private data

#setter

def set_minute(self, minute):
"""Set the minute.
if not (@ <= minute < 60):

raise ValueError(f'Minute ({minute}) must be ©-59")

self. minute = minute
#getter
def get_second(self):
"""Return the second."""
return self. second # Private data
#setter
def set second(self, second):
"""Set the second."""
if not (@ <= second < 60):
raise ValueError(f'Second ({second}) must be ©-59")

self. second = second

1.Class Time's __init__ method specifies hour, minute and second
parameters, each with a default argument of 0. The statements containing
self.set hour(), self.set minute() and self.set second() call
methods that implement the class's setter. Those methods then create attributes

named _hour, _minute and _second thatis meant for use only inside the class!

1.Class Time's __init__ method specifies hour, minute and second
parameters, each with a default argument of 0. The statements containing
self.set hour(), self.set minute() and self.set second() call
methods that implement the class's setter. Those methods then create attributes
named _hour, _minute and _second thatis meant for use only inside the class!

2. Lines 10-21 define methods that manipulate a data attribute named _hour . The
single-leading-underscore (_) naming convention indicates that we should not
access _hour directly. We define a getter method which gets (that is, returns) a
data attribute's value and a setter method, which sets a data attribute's value.

1.Class Time's __init__ method specifies hour, minute and second
parameters, each with a default argument of 0. The statements containing
self.set hour(), self.set minute() and self.set second() call
methods that implement the class's setter. Those methods then create attributes
named _hour, _minute and _second thatis meant for use only inside the class!

2. Lines 10-21 define methods that manipulate a data attribute named _hour . The
single-leading-underscore (_) naming convention indicates that we should not
access _hour directly. We define a getter method which gets (that is, returns) a
data attribute's value and a setter method, which sets a data attribute's value.

Here is how we initialize an object:

1.Class Time's __init__ method specifies hour, minute and second
parameters, each with a default argument of 0. The statements containing
self.set hour(), self.set minute() and self.set second() call
methods that implement the class's setter. Those methods then create attributes
named _hour, _minute and _second thatis meant for use only inside the class!

2. Lines 10-21 define methods that manipulate a data attribute named _hour . The
single-leading-underscore (_) naming convention indicates that we should not
access _hour directly. We define a getter method which gets (that is, returns) a
data attribute's value and a setter method, which sets a data attribute's value.

Here is how we initialize an object:

wake up = Time(hour=8, minute=30)

setter is called

The following code expression invokes the getter method:

The following code expression invokes the getter method:

wake_up.get_hour()
Instead of wake _up. hour

getter is called

8

The following code expression invokes the getter method:

wake up.get _hour()
Instead of wake up. hour

getter 1is called

8

The following code expression invokes the setter by assigning a value to the attribute:

The following code expression invokes the getter method:

wake up.get _hour()
Instead of wake up. hour

getter 1is called

8

The following code expression invokes the setter by assigning a value to the attribute:

wake up.set_hour(8)
Instead of wake _up. hour = 8

setter is called

Class Time 's getter and setter define the class's public interface — that is, the set of
attributes programmers should use to interact with objects of the class.

Class Time 's getter and setter define the class's public interface — that is, the set of
attributes programmers should use to interact with objects of the class.

Just like the private attributes above, not all methods need to serve as part of a class's
interface. Some serve as utility methods used only inside the class and are not intended
to be part of the class's public interface used by others. Such methods should be named
with a single leading underscore. In other object-oriented languages like C++, Java and
C#, such methods typically are implemented as private methods.

Class Time 's getter and setter define the class's public interface — that is, the set of
attributes programmers should use to interact with objects of the class.

Just like the private attributes above, not all methods need to serve as part of a class's
interface. Some serve as utility methods used only inside the class and are not intended
to be part of the class's public interface used by others. Such methods should be named
with a single leading underscore. In other object-oriented languages like C++, Java and
C#, such methods typically are implemented as private methods.

Note that although we define the public interface, the internal attribute can still be
accessed.

Class Time 's getter and setter define the class's public interface — that is, the set of
attributes programmers should use to interact with objects of the class.

Just like the private attributes above, not all methods need to serve as part of a class's
interface. Some serve as utility methods used only inside the class and are not intended
to be part of the class's public interface used by others. Such methods should be named
with a single leading underscore. In other object-oriented languages like C++, Java and
C#, such methods typically are implemented as private methods.

Note that although we define the public interface, the internal attribute can still be
accessed.

wake_up._ hour

Simulating "Private” Attributes

In programming languages such as C++, Java and C#, classes state explicitly which class
members are publicly accessible. Class members that may not be accessed outside a class
definition are private and visible only within the class that defines them.

In programming languages such as C++, Java and C#, classes state explicitly which class
members are publicly accessible. Class members that may not be accessed outside a class
definition are private and visible only within the class that defines them.

Rather than _hour, we can name the attribute __hour with two leading underscores.
This convention indicates that __hour is "private" and should not be access outside.

In programming languages such as C++, Java and C#, classes state explicitly which class
members are publicly accessible. Class members that may not be accessed outside a class
definition are private and visible only within the class that defines them.

Rather than _hour, we can name the attribute __hour with two leading underscores.
This convention indicates that __hour is "private" and should not be access outside.

class PrivateClass:
"""Class with public and private attributes.™™""

def init (self):
"""Initialize the public and private attributes.
self.public _data = "public" # public attribute
self. private_data = "privatel" # private attribute
self. private_data = "private2" # private attribute

In [41]: my object = PrivateClass()
my_object.public_data

Out[41]: ‘'public'

my object = PrivateClass()
my_object.public_data

"public'
my_object. private_data

"privatel’

my object = PrivateClass()
my _object.public_data

"public'
my_object. private_data

"privatel’

When we attempt to access ___private_data directly, we get an AttributeError
indicating that the class does not have an attribute by that name:

my object = PrivateClass()
my _object.public_data

"public'
my_object. private_data

"privatel’

When we attempt to access ___private_data directly, we get an AttributeError
indicating that the class does not have an attribute by that name:

my object. private data

AttributeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _9884\3291977527.py in

----> 1 my _object._ private_data

AttributeError: 'PrivateClass' object has no attribute ' private dat

a

In [74]: display quiz(path+"encapsulation.json", max_width=800)

What is printed by the following code?

Alice
~ R S Alice
Alice .

K Alice
AttributeErro
None

r

Class Methods

Class methods are associated with a class rather than individual objects like regular
methods are.

Class methods are associated with a class rather than individual objects like regular
methods are.

You can recognize a class method in code when you see two markers:

1. The @classmethod decorator before the method's def statement.

2. The use of cls as the first parameter

Class methods are associated with a class rather than individual objects like regular
methods are.

You can recognize a class method in code when you see two markers:

1. The @classmethod decorator before the method's def statement.

2. The use of cls as the first parameter

class ExampleClass:
def exampleRegularMethod(self):
print('This is a regular method.")
This 1s the "decorator" that takes another function as 1input,
extends or modifies its behavior, and returns a new function
@classmethod
def exampleClassMethod(cls):
print('This is a class method.")

ExampleClass.exampleRegularMethod() # This 1is not a valid statement

TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _27100\3660119935.py in

----> 1 ExampleClass.exampleRegularMethod() # This is not a valid stat
ement

TypeError: exampleRegularMethod() missing 1 required positional argume
nt: 'self'

ExampleClass.exampleRegularMethod() # This 1is not a valid statement

TypeError Traceback (most recent call
last)

~\AppData\Local\Temp\ipykernel _27100\3660119935.py in

----> 1 ExampleClass.exampleRegularMethod() # This is not a valid stat
ement

TypeError: exampleRegularMethod() missing 1 required positional argume
nt: 'self'

Call the class method without instantiating an object!
ExampleClass.exampleClassMethod()

obj = ExampleClass()

Given the above Line, these two Lines are equivalent

Note that we can also access the class method using obj!
obj.exampleClassMethod() # It will implicitly pass the class instead of the o
obj. class .exampleClassMethod()

This is a class method.

This is a class method.
This is a class method.

The cls parameter acts like self except self refers to an object, but the cls
parameter refers to an object's class.

The cls parameter acts like self except self refers to an object, but the cls
parameter refers to an object's class.

This means that the code in a class method cannot access an individual object’s

attributes or call an object's regular methods. Class methods can only call other class
methods or access class attributes.

The cls parameter acts like self except self refers to an object, but the cls
parameter refers to an object's class.

This means that the code in a class method cannot access an individual object’s
attributes or call an object's regular methods. Class methods can only call other class
methods or access class attributes.

Class methods aren't commonly used. The most frequent use case is to provide
alternative constructor methods besides __init_ () . For example, what if a

constructor function could accept either a string of data the new object needs or a
string of a filename that contains the data the new object needs?

We don't want the __init_ () method's parameters to be lengthy and confusing.

Instead, let's use class methods to return a new object. For example, let's create an
AsciiArt class.

We don't want the __init_ () method's parameters to be lengthy and confusing.

Instead, let's use class methods to return a new object. For example, let's create an
AsciiArt class.

%%writefile pokeball.txt

Overwriting pokeball.txt

class AsciiArt:
def init (self, characters):
""" Approachl: Initialize it with string
self. characters = characters

@classmethod
def fromFile(cls, filename):
""" Approach2: Initialize it with filename
with open(filename) as fileObj:
characters = fileObj.read()
return AsciiArt(characters) # This calls the __init__ function, notic

def display(self):
print(self. characters)

Other AsciiArt methods would go here...

In [] palll = AsciiArt("""

)

balll.display()

ball2 = AsciiArt.fromFile('pokeball.txt")
ball2.display()

ball2 = AsciiArt.fromFile('pokeball.txt")
ball2.display()

The AsciiArt classhasan __init__ () method that can be passed the text characters
of the image as a string. It also has a fromFile() class method that can be passed the

filename string of a text file containing the ASCII art. Both methods create AsciiArt
objects.

Class Attributes

A class attribute is a variable that belongs to the class rather than to an object. We create
class attributes inside the class but outside all methods, just like we can create global
variables in a .py file but outside all functions.

A class attribute is a variable that belongs to the class rather than to an object. We create
class attributes inside the class but outside all methods, just like we can create global
variables in a .py file but outside all functions.

Here's an example of a class attribute named count, which keeps track of how many
CreateCounter objects have been created:

A class attribute is a variable that belongs to the class rather than to an object. We create
class attributes inside the class but outside all methods, just like we can create global
variables in a .py file but outside all functions.

Here's an example of a class attribute named count , which keeps track of how many
CreateCounter objects have been created:

class CreateCounter:
count = @ # This 1s a class attribute.

def init (self):
CreateCounter.count += 1

print('Objects created:', CreateCounter.count) # Prints 0.

a = CreateCounter()
b = CreateCounter()
c = CreateCounter()

print('Objects created:', CreateCounter.count) # Prints 3.

Objects created: ©
Objects created: 3

In [75]: display quiz(path+"class_method.json", max_width=800)

What is printed by the following code?

Polymorphism

Polymorphism allows objects of one type to be treated as objects of another type (class).

1. For example, the 1len() function returns the length of the argument passed to it.
You can pass a string to len() to see how many characters it has, but you can
also passa 1list or dictionary to len() to see how many items or key-value
pairs it has, respectively. This polymorphism of function is called generic functions
or method/function overloading because it can handle objects of many different

types.

Polymorphism allows objects of one type to be treated as objects of another type (class).

1. For example, the 1len() function returns the length of the argument passed to it.
You can pass a string to len() to see how many characters it has, but you can
also passa 1list or dictionary to len() to see how many items or key-value
pairs it has, respectively. This polymorphism of function is called generic functions
or method/function overloading because it can handle objects of many different

types.

2. Polymorphism also includes operator overloading, where operators (such as + or
*) can behave differently based on the type of objects they're operating on. For
example, the + operator does mathematical addition when operating on two
integer or float values, but it does string concatenation when operating on

two strings.

Polymorphism allows objects of one type to be treated as objects of another type (class).

1. For example, the 1len() function returns the length of the argument passed to it.
You can pass a string to len() to see how many characters it has, but you can
also passa 1list or dictionary to len() to see how many items or key-value
pairs it has, respectively. This polymorphism of function is called generic functions
or method/function overloading because it can handle objects of many different

types.

2. Polymorphism also includes operator overloading, where operators (such as + or
*) can behave differently based on the type of objects they're operating on. For
example, the + operator does mathematical addition when operating on two
integer or float values, but it does string concatenation when operating on

two strings.

In Python, we can achieve method polymorphism by defining a method in a base class
and then overriding it in the derived classes. Each derived class can then provide its
implementation of the method.

class Animal:
def __init_ (self, name):
self.name = name

def speak(self):
pass # Don't do anything and prevent error by using this keyword

class Dog(Animal):
def speak(self):
return "Woof!"

class Cat(Animal):

def speak(self):
return "Meow!"

def speak(animal):
print(animal.speak())

animals = [Dog("Rufus"), Cat("Whiskers"), Dog("Buddy")]

method overloading
for animal in animals:
print(f'{animal.name} : {animal.speak()}")

function overloading

for animal in animals:
speak(animal)

def speak(animal):
print(animal.speak())

animals = [Dog("Rufus"), Cat("Whiskers"), Dog("Buddy")]

method overloading
for animal in animals:
print(f'{animal.name} : {animal.speak()}")

function overloading
for animal in animals:
speak(animal)

In this example, the Animal class defines the speak method as a pass statement,
meaning it does nothing. However, both Dog and Cat classes override the method
with their implementation of the method. This is called method overriding and is also a

form of polymorphism.

def speak(animal):
print(animal.speak())

animals = [Dog("Rufus"), Cat("Whiskers"), Dog("Buddy")]

method overloading
for animal in animals:
print(f'{animal.name} : {animal.speak()}")

function overloading
for animal in animals:
speak(animal)

In this example, the Animal class defines the speak method as a pass statement,
meaning it does nothing. However, both Dog and Cat classes override the method
with their implementation of the method. This is called method overriding and is also a
form of polymorphism.

The speak() function accepts any object that implements the speak() method,
meaning it can handle animals of different types. Here, we can pass both Dog and Cat
objects to the speak() function, as they both inherit the speak() method from the

Animal class.

Operator overloading

Python has several dunder method. You're already familiar with the __init__ ()
dunder method name, but Python has several more. We often use them for operator

overloading — that is, adding custom behaviors that allow us to use objects of our classes
with Python operators, such as + or >=.

Python has several dunder method. You're already familiar with the __init__ ()
dunder method name, but Python has several more. We often use them for operator

overloading — that is, adding custom behaviors that allow us to use objects of our classes
with Python operators, such as + or >=.

class Point:
def init (self, x, y):
self.x = x
self.y =y

def add_(self, other):
return Point(self.x + other.x, self.y + other.y)

def eq_ (self, other):
return (self.x == other.x) and (self.y == other.y)

pl = Point(1, 2)
p2 = Point(3, 4)
p3 = pl + p2

p4 = Point(4, 6)

print(p3.x, p3.y) # Output: 4 6
print(p3 == p4)

4 6
True

pl = Point(1, 2)
p2 = Point(3, 4)
p3 = pl + p2

p4 = Point(4, 6)

print(p3.x, p3.y) # Output: 4 6
print(p3 == p4)

4 6
True

In this example, we definethe ~__add__ and __eq__ method in the Point class to
implement the addition and equality of two Point objects. When we use the + and =
operators with two Point objects,the ~ add and _ _eq__ methods are called
automatically to perform the addition and comparison.

For more information about overloading, see here.

In [76]: display_quiz(path+"poly.json", max_width=800)

What is printed by the following code?

12.56 12.56 9

9 No area
12.56 No area

> Exercise 2: Inherit from Pokemon class to create new classes,
firePokemon and waterPokemon, that accept the same
parameters when constructed. Add a new method attack() for

the two derived classes that recieve a single parameter
attack type and print out the message like this:

Magmortar is attacking with flamethrower

In addition, define a function PokemonAttack() , which receives a Pokemon object and
an attack_type, then call the method attack() . Complete the following
class/function and execute the code cell.

class Pokemon:
def init (self, name, type, total specis):
self.name = name
self.type = type
self.total specis = total specis

def _ str_ (self):
return f"{self.name} ({self.type}, total specis {self.total specis})"

class firePokemon(Pokemon):
Your code here
def init (self, name, type, total specis):
self.name = name
self.type = type
self.total specis = total specis
Your code here
def attack(self, attack_type):
print(f"{self.name} is attacking with {attack type}")

import random
import json
import time
import requests

class waterPokemon(Pokemon):
Your code here
def init (self, name, type, total specis):
super(). init_ (name, type, total specis)
Your code here
def attack(self, attack type):
print(f"{self.name} is attacking with {attack_type}")

def PokemonAttack(pokemon, attack type):
Your code here
pokemon.attack(attack type)

def slow print(text, delay=0.05):
for char in text:
print(char, end=""', flush=True)
time.sleep(delay)
print()

1. Download the data

url = 'https://raw.githubusercontent.com/fanzeyi/pokemon.json/master/pokedex.
response = requests.get(url)

if response.status code == 200:
with open('pokedex.json', 'w', encoding = "utf-8") as f:
f.write(response.text)
else:

print(f"Failed to download the file. Status code: {response.status code}"

with open('Pokedex.json', 'r', encoding = "utf-8") as file:
pokemon_data = json.load(file)

2. Get the pokemon
random.shuffle(pokemon data)
getpokemon = []
i=20
while True:

if len(getpokemon) == 6:

break
if pokemon data[i]['type'][0] != "Fire" and pokemon_data[i]['type'][@] !=
i+=1
continue
else:
if pokemon data[i]['type'][@] == "Fire":

pokemon = firePokemon(pokemon_data[i]['name’]["'english'], pokemon
else:

pokemon = waterPokemon(pokemon data[i]['name’']['english'], pokemo
getpokemon.append(pokemon)
i+=1

3. Print the pokemon and attacR!
for i in range(6):
if getpokemon[i].type == "Fire":
attack = 'flamethrower'
else:
attack = 'hydro pump’
PokemonAttack(getpokemon[i], attack)

Palkia is attacking with hydro pump
Kingdra is attacking with hydro pump
Seaking is attacking with hydro pump
Clamperl is attacking with hydro pump
Greninja 1is attacking with hydro pump
Azumarill is attacking with hydro pump

Summary

Object-oriented programming is a programming paradigm that provides a means of
structuring programs so that attributes and behaviors are bundled into individual objects.

e Inheritance promotes code reusability and organization by allowing derived classes

to inherit attributes and methods from parent classes.

Object-oriented programming is a programming paradigm that provides a means of
structuring programs so that attributes and behaviors are bundled into individual objects.

e Inheritance promotes code reusability and organization by allowing derived classes

to inherit attributes and methods from parent classes.

e Encapsulation improves maintainability and security by bundling data and methods

within objects and controlling access to their internal state.

Object-oriented programming is a programming paradigm that provides a means of
structuring programs so that attributes and behaviors are bundled into individual objects.

e Inheritance promotes code reusability and organization by allowing derived classes

to inherit attributes and methods from parent classes.

e Encapsulation improves maintainability and security by bundling data and methods
within objects and controlling access to their internal state.

e Polymorphism enhances flexibility and extensibility by enabling a single interface to
represent different types, allowing for interchangeable objects and easier code

modification.

In [2]: from jupytercards import display flashcards
fpath= "https://raw.githubusercontent.com/phonchi/nsysu-mathl06A/refs/heads/m
display flashcards(fpath + 'ch8.json")

Object Oriented Programming (OOP)

Next

	Creating and using class
	Creating the Dog class
	The __init__ method
	Making an instance from a class
	Creating multiple instances

	Working with classes and instances
	The Car class
	Modifying attribute values
	__repr__ and __str__ method

	Inheritance
	The __init__ method for a child class
	Overriding methods from the parent class
	Use composition to organize the code

	Encapsulation
	Simulating private attributes

	Class methods
	Class attributes
	Polymorphism
	Operator overloading

